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Unwinding a polymer in a poor solvent
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We consider a collapsed polymer chain in a poor solvent sufficiently below the ® point under the action of
a force to unwind it. Using a simple phenomenological mean-field model, we show the polymer coil changes
from the collapsed state to the stretched state via a first-order transition as the stretching force is increased. The
phase diagram is calculated which consists of a first-order line with a tricritical end point. The lifetimes of the
metastable states are also calculated and the hysteresis effects are discussed. Possible connections to molecular
gateway and memory devices in chemical engineering are also explored.

PACS number(s): 05.70.Fh, 64.60.Kw, 64.60.My, 61.41.+e

I. INTRODUCTION

Recent experimental techniques allow the possibility to
manipulate and observe the configuration of single DNA
macromolecules under external stretching forces using fluo-
rescence microscopy. A magnetic bead is attached to the free
end of an end-grafted DNA and subjected to magnetic [1] or
hydrodynamic [1,2] forces. Previous analytical treatment
[3,4] employing scaling calculations were concerned with
the deformation and unwinding of an anchored polymer
chain under forces or flows for swollen or ideal polymer
chains. These studies found that in these cases, the deforma-
tion of the chain is progressive and no sharp coil-stretch
phase transition occurs. In this study, we consider another
more interesting situation, namely the unwinding of a poly-
mer collapsed in a poor solvent, i.e., much below the ®
point. We find that there is a first-order transition from the
collapsed globule to the stretched state. By increasing the
external unwinding force, the linear dimension of the poly-
mer coil can vary over several orders of magnitude abruptly.
This may be useful in some applications on chemical and/or
biochemical engineering in designing molecular gateway in
which the gate is closed by stretching the polymer chain to
block the path. Furthermore, the unfolding of these collapsed
macromolecules may provide relevant information on the
mechanism of protein folding and other related structures in
biomolecules. From the point of view of statistical physics,
such a system shows a variety of interesting phase transition
phenomena and can provide experimental realizations and
testing grounds for these theoretical models. Using a simple
Flory-type mean-field theory, we show that if the system is in
a sufficiently poor solvent condition, the polymer chain un-
dergoes a first-order transition from the collapsed state to the
stretched state. The hysteresis effect associated with the first-
order transition is reminiscent of a magnetic system which
can be used as a memory device. Thus this phenomenon can
be used as a prototype mechanism for chemical engineering
in molecular memory devices. Also, such a system may pro-
vide possible connections to the memory effects in biological
systems such as memory cells.

II. FLORY MEAN-FIELD CALCULATIONS

We consider a polymer chain with N+ 1 monomers
(N>1) collapsed in a poor solvent with one end fixed at
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some point in space. A force f pulls on its free end in the z
direction which tends to unwind the chain. Let # denotes the
end-to-end distance of the chain, then the total phenomeno-
logical reduced free energy is composed of three terms cor-
responding to the elastic free energy, mixing free energy and
the potential energy due to f as follows:

1
BF:FEZ+ZI?J darFmix[(ﬁ].—th’ (1)

where 8= (kT) ! is the inverse temperature, a is the mono-
mer size, F,; is the elastic free energy due, and F,,;, the
mixing free energy. In the poor solvent regime, the elastic
free energy [5] consists of two terms
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where %(x)=cothx—1/x is the Langevin function. The first
term in F,; takes into account the finite extensibility of the
chain [6—8] which is important for strongly stretched con-
figurations and reduces to the usual Gaussian stretching
(3h%/(2Na?)) for small deformations whereas the second
term dominates for collapsed configurations. F,,;, is taken to
be the Flory mixing free energy [6,9]

Fri(#)=(1=¢)/n(1=¢)+xp(1-¢), 3)

where y is the usual Flory interaction parameter and ¢ is the
monomer volume fraction. As in the usual Flory mean-field
calculation, ¢ is approximated by a constant. In the absence
of external force, the chain has a spherical shape and it has
been shown that the second-order transition from the swollen
state to the collapsed state [9,10] occurs at y,=1/2. For
x> 1/2, the polymer coil is in a swollen state with a linear
dimension R~aN*>. At the ® point, x= x.= 1/2, the poly-
mer chain behaves like an ideal coil with R~aN'2. And for
Xx>1/2 the chain has a collapsed configuration with a linear
dimension =aN'3.

As the unwinding force acting on the free end increases
from zero, the shape of the collapsed globule will be de-
formed to an ellipsoid with the dimension in the z direction
being ~ while the linear dimension on the xy plane remains
essentially unaltered for small f. Thus within the mean-field
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FIG. 1. Reduced free energy as a function of the stretch order
.parameter 7 for various values of stretch forces with y=2 and
N=1000. f is in units of 1/(Ba).

approximation, ¢=aN'?/h. Such an approximation breaks
down for the stretched state, but in this case the free energy
in dominated by stretching free energy [first term in Eq. (4)]
and F,,;, is negligible, hence it is still legitimate to keep such
an approximation in the entire range of f. The minimum
value of %, denoted by #4,,;, , corresponds to the unperturbed
globule, £,,;,=aN"?. The collapsed state and the stretched
state can be characterized by the stretching order parameter
[11] %=h/(Na). The collapsed state corresponds to
7= min=N"%% and —0 in the long chain limit while
n=1 in the fully stretched state. In terms of the order pa-
rameter 77, the total reduced free energy can be written as

BF J" . 3 77?nin n (( nmin)
—=| Z Yuwdu+z + 1-
N Jo ( 2 7 D 7

x/n(l—%))ﬂ((l— ”':’i")—ﬂfaﬂ. (4)

Henceforth Ba is understood to be absorbed in the unit of
f. The stable state is given by the value of % in the domain
Nmin=m=1 that minimizes the free energy. The poor solvent
regime is characterized by x> 1/2 and Fig. 1 shows the typi-
cal behavior of F(#7) for y=2. For small values of f, the
minimum of F stays at #,,;, corresponding to the collapsed
state, while for sufficiently strong f, a new minimum occurs
at a larger value of 7 corresponding to the stretched state.
For x>1/2 the transition from the collapsed state to the
stretched state is discontinuous as f increases. The order pa-
rameter (7) that minimizes F can be solved numerically
from Eq. (4) and is shown in Fig. 2 as a function of f for
N=10° and 10° at y=2. For f less than some f*, the col-
lapsed globule is basically not affected by the unwinding
force; as f increases up to f*, the chain is unfolded abruptly
resulting in a first-order transition at f*. The discontinuous
change from the collapsed state (size < N'/3) to the stretched
states (size «N) covers a change of linear dimension of sev-
eral orders of magnitude for realistic macromolecular chains
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FIG. 2. (%) versus f for y=2 with N=10° and N=10°. f is in
units of 1/(Ba). The circle is the Langevin function £(f).

and hence provides a nice open-close switch for a biochemi-
cal gateway. For f>f*, the chain is gradually stretched fur-
ther and eventually approaches the fully stretched state. In
fact, for f>f* the stretching is well described by the Lange-
vin function with = _4(f), which is denoted by the circles
in Fig. 2. This indicates that once the chain is elongated, the
monomer-monomer interactions become negligible and the
free energy is dominated by the first and last term in Eq. (4).
Figure 3 shows the order parameter (7) as a function of f
solved from Eq. (4) for various values of x. For
X<x.=1/2, the coil is in a swollen state and it unwinds
progressively without any abrupt change in its size upon an
increasing stretching force. More interestingly, a similar be-
havior of no abrupt change also occurs in the x, <x<2yx,
collapsed regime. In fact, in the N—o limit (#) can be
solved analytically from Eq. (4),

1.0 . . . .
08
]
i
[ |
|
0.6 - ; i 0.75
AY g | — 2 ]
\ |- 4
04 : .
It !
I/ ]
02 / ! -
I 1
] ]
i |
/ 1
0.0 1 i 1 1 1
0.0 20 4.0 6.0 8.0 10.0

f

FIG. 3. () versus f for x=0, 0.75, 2, and 4 with N=10°. f is
in units of 1/(Ba).
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FIG. 4. Phase diagram f* versus x. The solid curve is a first-
order transition line which ends at the tricritical point at f*=0 and
x=1. f* is in units of 1/(Ba). The dashed curve denotes a second-
order transition line.

0 for f<f*
(M= A(f) for f>f*. ®

Furthermore for a given value of y, f* can be solved from
the following two equations:

F( nmin)zF( 7}) (6)
and
IF(n)
Py =0 @)

with two unknowns 7 and f*. In the N— limit, we obtain
the equation for the first-order phase transition boundary

f*=e! " Xsinhf*. 8)

It is easy to see from Eq. (8) that a positive solution for f*
exists only for y>2 x.= 1. The phase diagram f* versus y is
shown in Fig. 4. The first-order line separating the collapsed
and stretched states ends at =2y, and f*=0. The known
second-order transition point [9,10] from the swollen state to
the collapsed state at f=0 and y= y.=1/2 is also shown.
This collapsed transition at f=0 and y= 1/2 has been exten-
sively studied using scaling [12] calculations, renormaliza-
tion group method [13], and Monte Carlo simulations [14],
and it has been well established that the critical phenomenon
is governed by a tricritical point. In the present case, there is
another tricritical point which is the merging point for the
first-order line in the f*>0 regime and a second-order line
of phase transitions in the f=0 and x.<y=<2yx, regime. A
more detailed calculation indicates that F(7) has no local
maximum in the y,<y=<2y, regime. This is demonstrated
in Fig. 5 for x=0.75, which shows that there is only one
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FIG. 5. Reduced free energy as a function of the stretch order
parameter 7 for various values of stretch forces with y=0.75 and
N=1000. f is in units of 1/(Ba).

local minimum in F(#) for all values of f. In the N—o
limit, the order parameter ( ) that minimizes F(#) is calcu-
lated to be

(ny=A(f) forallf=0 and . <x<2x.. 9)

Thus the polymer globule is elongated progressively and
continuously. In fact, if one extends to the f<<0 region in the
Xc=x=2x, regime, i.e., compressing the coil by bringing
the two ends together, { 7) will remain zero for f<<0, and for
=0, {7) follows Eq. (9) with f=0 being a line of second-
order transitions.

III. LIFETIME OF METASTABLE STATES

For x>2y.=1, the free energy F(7) possesses two local
minima for # in the range [ 7,,;,,1] (see Fig. 1) separated by
a free energy barrier. The first minimum is at 7,,;, while the
second one is given by Eq. (7). For f<<f*, the stretched state
(s state) is a metastable state and the characteristic time for it
to transit to the true stable state depends on the free energy
barrier height AF . via 7,.~exp(BAF;.), where the subscript
sc denotes transition from the s state to the collapsed (c¢)
state. Similarly for f>f*, the time scale for the metastable
¢ state to transit to the stable s state goes as
7.5~ eXp(BAF,,). The barrier is related to the local maximum
of the free energy that occurs at 7 which can be calculated
also from Egs. (4) and (7). In the large N limit, we get

N x— 3 1

7= N7 N (10
and for y<<x.=1/2 no free energy barrier exists, as dis-
cussed in the preceding section. The free energy barriers can
be calculated from Eq. (4). Figure 6 displays the reduced free
energy barrier as a function of f for y=2. The free energy
barrier is maximal at f=f* as expected. Furthermore, Fig. 6
indicates that the collapsed metastable state (in the f>f*
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FIG. 6. Reduced free energy barrier versus f for y=2 and
N=10°. f*=2.68. f is in units of 1/(Ba). Solid line is the barrier
from the metastable stretched state to transit to the stable collapsed
state. Dashed line is the barrier from the metastable collapsed state
to transit to the stable stretched state.

regime) has in general a longer lifetime than the stretched
metastable state (in the f<<f* regime). We obtain the free
energy barriers in the large NV limit analytically,

AF,, inh f(x— 1)
Ach f( _%)
Pl 1= 02 . )

The existence of metastable states in a first-order transition is
manifested experimentally by the presence of hysteresis loop
if the observation time is not much greater than the lifetime
of metastable states. A strong hysteresis effect is essential for
a memory device in complete analogy to a magnetic system.
One can imagine the s state (¢ state) corresponds to a “1”
(“0’) in some kind of molecular memory device. A “good
memory”’ corresponds to a long lifetime for the metastable
state; even the external stretching force is removed. Thus a

knowledge of the lifetime of the metastable states or the
height of the free energy barrier is essential in the design of
such a molecular memory device. The memory or hysteresis
effect can be measured by the maximum of the free energy
barrier that occurs at f=jf*. The barrier increases with y
monotonously. Hence the lifetime of the metastable state can
be written as

7~exp[g(x)N] (13)

for some positive function g(x). The function g(x) can be
calculated analytically in the large N limit and we have

V¥ (x— 1)

g =x—1~ . (14)

Thus in the N— o0 limit, g(x) is positive for x>2x.=1 and
the lifetime of the metastable state is given by
7= 19exp[(x—1)N] for some microscopic time scale 7. Be-
cause of the exponential increasing factor in the chain length
N, 7 can be macroscopic or even astronomical.

IV. SUMMARY AND OUTLOOK

In summary, using the Flory-type mean-field calculation,
we found an interesting first-order transition in unfolding a
collapsed polymer globule for y>2 y.= 1. This phenomeno-
logical mean-field theory, though somewhat crude, yields
many interesting physics including a rich phase diagram and
information on the lifetime of the metastable states. These
results can be readily tested by experiments with setups in
Refs. [1,2] and by simulations [15]. We hope our results can
stimulate more detailed theoretical work using renormaliza-
tion group and field-theoretical methods, as well as experi-
ments and designs in chemical engineering. Our mean-field
results have been confirmed qualitatively by a separate
Monte Carlo simulation using the bond-fluctuation model.
The first-order transition signified by the abrupt jump in the
stretching order parameter and the associated hysteresis ef-
fect are clearly observed in the simulation. These results will
be published elsewhere [15].
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